
Working with data in R

E. Anne Chambers
September 22, 2017

Slide: Sean Leonard

Tidy data: contingency table

http://wilkelab.org/classes/SDS348/2015_spring_slides/class5.pdf

treatment	 outcome	 count	
drug	 survived	 15	
drug	 died	 3	
placebo	 survived	 4	
placebo	 died	 12	

survived	 died	
drug	 15	 3	
placebo	 4	 12	

1. Each variable forms a column

http://wilkelab.org/classes/SDS348/2015_spring_slides/class5.pdf

treatment	 outcome	 count	
drug	 survived	 15	
drug	 died	 3	
placebo	 survived	 4	
placebo	 died	 12	

survived	 died	
drug	 15	 3	
placebo	 4	 12	

2. Each observation forms a row

http://wilkelab.org/classes/SDS348/2015_spring_slides/class5.pdf

treatment	 outcome	 count	
drug	 survived	 15	
drug	 died	 3	
placebo	 survived	 4	
placebo	 died	 12	

survived	 died	
drug	 15	 3	
placebo	 4	 12	

3. Each value has a cell

http://wilkelab.org/classes/SDS348/2015_spring_slides/class5.pdf

treatment	 outcome	 count	
drug	 survived	 15	
drug	 died	 3	
placebo	 survived	 4	
placebo	 died	 12	

survived	 died	
drug	 15	 3	
placebo	 4	 12	

Tidy data

•  Rules of tidy data:
– Each variable must have its own column
– Each observation must have its own row
– Each value must have its own cell

Why are tidy data ideal?

•  Let me give you a practical example...

abnorma micropholis polyzona alterna annulata gentilis triangulum elapsoides

individuals (assigned into populations/colors)

pr
op

. a
ss

ig
ne

d

What do the raw data look like?

> View(output)

10 populations

10
0,

00
0

ge
ne

ra
tio

ns
 (“

C
yc

le
”)

97
 in

di
vi

du
al

s

Recall ggplot from last week...
abnorma micropholis polyzona alterna annulata gentilis triangulum elapsoides

individual (grouped by population)

pr
op

or
tio

n

> ggplot(data,

Recall ggplot from last week...

> ggplot(data, aes(x=individual,

abnorma micropholis polyzona alterna annulata gentilis triangulum elapsoides

individual (grouped by population)

pr
op

or
tio

n

Recall ggplot from last week...

> ggplot(data, aes(x=individual, y=proportion,

abnorma micropholis polyzona alterna annulata gentilis triangulum elapsoides

individual (grouped by population)

pr
op

or
tio

n

Recall ggplot from last week...

> ggplot(data, aes(x=individual, y=proportion, fill=population))

abnorma micropholis polyzona alterna annulata gentilis triangulum elapsoides

individual (grouped by population)

pr
op

or
tio

n

Recall ggplot from last week...

> ggplot(data, aes(x=individual, y=proportion, fill=population))
+ geom_bar()

abnorma micropholis polyzona alterna annulata gentilis triangulum elapsoides

individual (grouped by population)

pr
op

or
tio

n

Recall ggplot from last week...

> ggplot(data, aes(x=individual, y=proportion, fill=population))
+ geom_bar()

abnorma micropholis polyzona alterna annulata gentilis triangulum elapsoides

individual (grouped by population)

pr
op

or
tio

n

Before we go any further...

•  Standard R:
> mean(dataframe$column)
> mean(iris$Sepal.Length)

The pipe operator!
•  With pipe:
> iris$Sepal.Length %>% mean()

%>%
“then”

http://wilkelab.org/classes/SDS348/2015_spring_slides/class5.pdf

Before we go any further...

•  Left and right assignment

•  Left assignment:
> x <- 5
> x

[1] 5
•  Right assignment:
> 6 -> x
> x
[1] 6

->
<-

http://wilkelab.org/classes/SDS348/2015_spring_slides/class5.pdf

Combining pipe and assignment

•  These two lines do the same thing:

> iris$Sepal.Length %>% mean() -> mean.length
> mean.length <- iris$Sepal.Length %>% mean()

> mean.length
[1] 5.843333

http://wilkelab.org/classes/SDS348/2015_spring_slides/class5.pdf

Spreading and gathering

•  gather()
– some columns are values of a variable

2008 2013 2016

Reptiles 8541 9556 10228

> gather(variable value, key, value)
> data %>%
gather(`2008`, `2013`, `2016`,
key=Year, value=Species)

Spreading and gathering

•  gather()
– some columns are values of a variable

2008 2013 2016

Reptiles 8541 9556 10228

> gather(variable value, key, value)
> data %>%
gather(`2008`:`2016`,
key=Year, value=Species)

Spreading and gathering

•  gather()
– some columns are values of a variable

2008 2013 2016

Reptiles 8541 9556 10228

> gather(variable value, key, value)
> data %>%
gather(2:4,
key=Year, value=Species)

> gather(variable value, key, value)
> data %>%
gather(`2008`, `2013`, `2016`,
key=Year, value=Species) -> newdata
> newdata

Year Species

Reptiles 2008 8541

Reptiles 2013 9556

Reptiles 2016 10228

Spreading and gathering
•  spread()
– observation scattered across multiple rows

Group Type Year Species

Reptiles Lizards 2008 5079

Reptiles Snakes 2008 3149

Reptiles Turtles 2008 313

Reptiles Lizards 2016 6263

Reptiles Snakes 2016 3619

Reptiles Turtles 2016 346

> spread(key, value)
> data %>%

spread(key=Type, value=Species)

> spread(key, value)
> data %>%

spread(key=Type, value=Species) -> newdata
> newdata

Group Year Lizards Snakes Turtles

Reptiles 2008 5079 3149 313

Reptiles 2016 6263 3619 346

Exercise 1

> tidyout <- output %>%
 gather(individual, population, -Cycle)

output

tidyout

Working with dplyr

Fundamental actions on data frames:
•  select rows – filter()
•  select columns – select()
•  make new columns – mutate()
•  arrange rows – arrange()
•  calculate summary stats – summarize()
•  work on groups of data – group_by()

Comparison and logical operators

< less than

<= less or equal to

> greater than

>= greater or equal to

!= does not equal

== equal

& and
| or
! not

•  filter() rows
> tidyout %>% filter(Cycle==100 | Cycle==200)

•  select() columns
> tidyout %>% select(individual:population)

mutate() to add columns

> dataframe %>% mutate(newcolname=fxn)
•  Say I want to add a column with fraction

of run that’s finished...
> tidyout %>% mutate(prop=Cycle/100000)

sex

F

F

M

F

M

M

group_by()working on groups

> dataframe %>% group_by(varyouwantgrouped)

group_by()working on groups

> dataframe %>% group_by(varyouwantgrouped)

sex

F

F

M

F

M

M

group_by()working on groups

•  Say I want to only consider results from
each individual at a time (not meaningful
otherwise)

> tidyout %>% group_by(individual) %>% ...

Proportion of # generations (Cycle) placed each individual
into each population

tidyout

> tidyout %>%
group_by(individual, population)

Proportion of # generations (Cycle) placed each individual
into each population

tidyout

> tidyout %>%
group_by(individual, population) %>%
summarize(count=n())

Proportion of # generations (Cycle) placed each individual
into each population

tidyout

> tidyout %>%
group_by(individual, population) %>%
summarize(count=n()) %>%
mutate(proportion = count/100000)
-> finalout

Proportion of # generations (Cycle) placed each individual
into each population

tidyout

> tidyout %>%
group_by(individual, population) %>%
summarize(count=n()) %>%
mutate(proportion = count/100000)
-> finalout

> finalout

Proportion of # generations (Cycle) placed each individual
into each population

Useful summary functions

•  mean() – mean of values
•  sum() – sum values
•  median() – median
•  sd() – standard deviation
•  var() – variance
•  cor() – correlation

Exercise 2

