
466 Appendix 1

You can install MySQL at the command line or using the GUI through System Ή
Administration Ή Synaptic Package Manager. If you do install MySQL with apt-get
at the command line, it is a good idea to update your installer information fi rst
with the command:

sudo apt-get update

Then type this command in a terminal window:

sudo apt-get install mysql-server

It will ask you a few times if you want to set the root password. You can leave it
blank for the purposes of this demo and change it later if you wish to make your
databases work over the Web.

Working with vector and pixel art in Linux for Chapters 17–19
The open source graphics programs discussed in this book (Inkscape, ImageJ, and
GIMP) can be installed on Ubuntu through the Synaptic Package Manager. Select the
System menu at the top of the Ubuntu screen, then the Administration submenu,
and click on the Synaptic Package Manager. Search for the programs you want
to install, mark them for installation, and click the apply button at the top of the
screen.

Appendix1.indd 466Appendix1.indd 466 10/7/10 3:50 PM10/7/10 3:50 PM

REGULAR EXPRESSION
SEARCH TERMS

Appendix 2

Regular expressions—ways to perform adaptive searches and replacements—are
described in Chapters 2 and 3. Here we provide a quick reference to some of the
more common regular expression terms. This table and the text of the book itself
do not encompass the entire range of regular expressions. There are many other
useful constructs, for example, embedding miniature scripts into your replacement
terms, and searching for A or B in a string using the syntax (sword|jelly)fish.
If you would like to delve deeper, there are many online references, and there is
even an in-depth reference guide built into the Help menu of TextWrangler.

There is some variation in the terms supported from program to program and
from language to language. The most widespread terms, which can be used almost
anywhere that regular expressions are supported, are the POSIX Extended Regu-
lar Expressions. These include ., *, +, {}, (), [], [^], ^, $, ?, and |. While quite a
bit can be accomplished with the POSIX terms, in many implementations the lan-
guage has been supplemented with some nonstandard terms. Most of these non-
standard terms are based on Perl regular expressions. These include many of the
character class wildcards listed in the tables below, such as \d, \w, and \n. These
extra wildcards make it easier to write clear regular expressions. Lack of support
for Perl-like regular expressions is one of the most common causes of confusion
when moving to a new programming context.

If you are using regular expressions in a new context but fi nd that they don’t
behave as expected, or that they generate errors, check to see which regular expres-
sions are supported by the tool you are using. POSIX does defi ne its own set of
wildcards, but the syntax is different from the Perl-style \w format that we use in this
book. These wildcards include [:digit:] in place of \d and [:alpha:] instead
of \w that we use in this book (though not including the digits). These POSIX char-
acter classes can be used in some contexts where Perl classes aren’t available, includ-
ing SQL queries and the command-line tool grep. If you don’t want to switch be-
tween wildcard types, a more universal solution is to replace character class
wildcards with an explicit character range, such as [0-9] or [A-Z].

Appendix2.indd 467Appendix2.indd 467 10/7/10 3:54 PM10/7/10 3:54 PM

ISBN 978-0-87893-391-4
©2011. All rights reserved

http://practicalcomputing.org/

Available at Sinauer and Amazon.

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

468 Appendix 2

Wildcards

\w Letters, numbers and _

. Any character except \n \r

\d Numerical digits

\t Tab

\r Return character. Also used as the generic end-of-line character in
TextWrangler

\n Line-feed character. Also used as the generic end-of-line character in
Notepad++

\s Space, tab, or end of line

[A-Z] A single character of the ranges indicated in square brackets

[^A-Z] A single character including all characters not in the brackets. Note that
this will include \n unless otherwise specifi ed, and may cause you to
match across lines

\ Used to escape punctuation characters so they are searched for as them-
selves, not interpreted as wildcards or special symbols

\\ The \ symbol itself, escaped

Boundaries

^ Match the start of the line, i.e., the position before the fi rst character

$ Match the last position before the end-of-line character

Appendix2.indd 468Appendix2.indd 468 10/7/10 3:54 PM10/7/10 3:54 PM

Regular Expression Search Terms 469

Quantifi ers, used in combination with characters and wildcards

+ Look for the longest possible match of one or more occurrences of the
character, wildcard, or bracketed character range immediately preced-
ing. The match will extend as far as it can while still allowing the entire
expression to match.

* As above, matches as many of the previous character to occur, but allows
for the character not to occur at all if the match still succeeds

? Modifi es greediness of + or * to match the shortest possible match
instead of longest

{} Specify a range of numbers to repeat the match of the previous character.
For example:
\d{2,4} matches between 2 and 4 digits in a row
[AC]{4,} matches 4 or more of the letter A or C in a row

Capturing and replacing

() Capture the search results between the parentheses for use in the re-
placement term

\1
$1

Substitute the contents of the matched into the replacement term, in
numerical order. Syntax depends on the text editor or language that
you are using.

Appendix2.indd 469Appendix2.indd 469 10/7/10 3:54 PM10/7/10 3:54 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

Appendix2.indd 470Appendix2.indd 470 10/7/10 3:54 PM10/7/10 3:54 PM

SHELL COMMANDS

Appendix 3

Terminal operations are described in Chapters 4–6, 16, and 20. Many of the built-
in bash shell commands are summarized here for quick reference. To get more
information about a command and its options, type man, followed by the name of
the command. If you are not sure which command applies, you can also search the
contents of the help fi les using man -k followed by a keyword term.

Command Description Usage

ls List the fi les in a directory
Parameters that follow can be folder names (use * as a

wildcard)

-a Show hidden fi les
-l Show dates and permissions
-1 List the fi le names on separate lines. Useful as a

 starting point for regexp into a list of commands
-G Enable color-coding of fi le types
-F Show a slash after directory names

ls -la

ls -1 *.txt

ls -FG scripts

ls ~/Documents

ls /etc

cd Change directory
Without a slash, names are relative to the current directory
With a preceding slash (/) names start at the root level
Tilde (~/) starts at the user’s home directory
Two dots (..) goes “up” to the enclosing directory
One dot refers to the current directory
Minus sign goes to the previously occupied directory
Use T key (see below) to auto-complete partially typed

paths
Use backslash before spaces or strange characters in the

directory name, or put the whole name in quotes

cd scripts

cd /User

cd ~/scripts

cd My\ Documents

cd 'My Documents'

cd ../..

cd ..

cd -

Appendix3.indd 471Appendix3.indd 471 10/7/10 3:58 PM10/7/10 3:58 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

472 Appendix 3

Command Description Usage

pwd Print the working directory (the path to the folder you are in)

Ø Ø key to step back through previously typed commands
The cursor can be repositioned with the fl and ¸ keys,

and commands can then be edited
Press R from anywhere in the line to re-execute. On OS

X you can also reposition by W-clicking at a cursor
location

T Auto-complete fi le, folder, or script names at the command
line

cd ~/Doc T

less Show contents of a fi le, page by page
These commands also apply to viewing the results of man
While less is running:

q Quit viewing

space Next page

b Back a page

15 g Go to line 15

G Go to the end

Ø or Á Move up or down a line

/abc Search fi le for text abc

n After an initial search, fi nd next
occurrence of the search item

? Find previous occurrence of the
search item

h Show help for less

less data.txt

mkdir Make a new directory (a new folder) mkdir scripts

rmdir Remove a directory (folder must be empty) rmdir ~/scripts

rm Remove fi le or fi les
Use the -f fl ag to delete without confi rmation (careful!)
Use the -r fl ag to recursively delete the fi les in a directory

and then the directory itself

rm test.txt

rm -f *_temp.dat

man Show the manual pages for a Unix command
Use -k to search for a term within all the manuals
The result is displayed using the less command above,

so the same shortcuts allow you to navigate through

man mkdir

man -k date

man chmod

Appendix3.indd 472Appendix3.indd 472 10/7/10 3:58 PM10/7/10 3:58 PM

 Shell Commands 473

Command Description Usage

cp Copy fi le, leaving original intact
Does not work on folders themselves
Single period as destination copies fi le to current

directory, using same name

cp test1.txt test1.dat

cp temp ../temp

cp ../test.py .

mv Move fi le or folder, renaming or relocating it
Unlike cp, this does work on directories

mv test1.txt test1.dat

mv temp ../temp2

| Pipe output of one command to the input of another
command

history | grep lucy

> Send output of a command to a fi le, overwriting existing
fi les

Do not use a destination fi le that matches a wildcard on the
left side

ls -1 *.py > files.txt

>> Send output of a command to a fi le, appending to existing
fi les

echo "#Last line" >> data.txt

< Send contents of a fi le into command that supports its
contents as input

mysql -u root midwater < data.sql

./ Represents the current directory in a path—the same
location as pwd

Trailing slash is optional
Can execute a fi le in the current directory even when the

fi le directory is not included in the PATH

cp ../*.txt ./

./myscript.py

cat Concatenate (join together) fi les without any breaks.
Streams the contents of the fi le list across the screen

cat README

cat *.fta > fasta.txt

head Show the fi rst lines of a fi le or command
Use the -n fl ag to specify the number of lines

head -n 3 *.fasta

ls *.txt | head

tail Show the last lines of a fi le or output stream
Use the -n fl ag to specify the number of lines to show
With a plus sign, skip that number of lines and show to the

end. Use -n +2 to show from the second line of the fi le
to the end, skipping one header line

tail -n 20 *.fta

tail -n +3 data.txt

wc Count lines, words, and characters in an output stream
or fi le

wc data.txt

ls *.txt | wc

which Show the location of executable fi les in the system path which man

Appendix3.indd 473Appendix3.indd 473 10/7/10 3:58 PM10/7/10 3:58 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

474 Appendix 3

Command Description Usage

grep Search for phrase in a list of fi les or pipe and show matching lines:
grep -E "searchterm" filelist

Often used in conjunction with piped output: command | grep searchterm
Use quotes around search terms, especially spaces or punctuation like >, &, #, and others
To search for tab characters, type DV followed by T inside the quotes
Optional fl ags:

-c Show only a count of the results in the fi le

-v Invert the search and show only lines that do not match

-i Match without regard to case

-E Use full regular expressions
Terms should be enclosed in quotes. Use [] to indicate a

character range rather than the wildcards of Chapters 2 and 3
General wildcard equivalents:
\s [[:space:]]

\w [[:alpha:]]

\d [[:digit:]]

-l List only the fi lenames containing matches

-n Show the line numbers of the match

-h Hide the fi lenames in the output

agrep Search for approximate matches, allowing insertions,
deletions, or mismatched characters. (Must be installed
separately.) See Chapter 21

Optional fl ags include:

-d "," Use comma as delimiter between records

-2 Return results with up to 2 mismatches.
Maximum is 8 mismatches

-B -y Return the best match without specifying
a number of mismatches

-l Only list fi le names containing matches

-i Match without regard to case

agrep -d "\>" -B -y ATG seqs.fta

agrep -3 siphonafore taxa.txt

chmod Change access permissions on a fi le (usually to make a
script executable or Web accessible)

First option is one of u, g, o for user, group, other
Second option after the plus or minus is r, w, or x, for

read, write, or execute. Can also use binary encoding
as explained in Appendix 6

chmod u+x file.pl

chmod 644 myfile.txt

chmod 755 myscript.py

Appendix3.indd 474Appendix3.indd 474 10/7/10 3:58 PM10/7/10 3:58 PM

 Shell Commands 475

Command Description Usage

set Show environmental variables, including functions that have
been defi ned

$HOME The environmental variable containing the path user’s home
directory

echo $HOME

cd $HOME

$PATH The user’s PATH variable, where the directories to search for
commands are stored

export PATH=$PATH:/usr/local/bin

nano Invoke the text editor. Control key sequences include:

D X Exit nano (will be prompted to save)

D O Save fi le without exiting

D Y Scroll up a page

D V Scroll down a page

D C Cancel operation

D G Show help and list of commands

nano filename.txt

DC Interrupt the current process

sort Sort lines of a fi le

-k N Sort using column number N instead of
starting at the fi rst character. Columns
are delimited by a series of white space
characters

-t "," In conjunction with –k, use commas as the
delimiter to defi ne columns

-n Sort by numerical value instead of
alphabetical

-r Sort in reverse order

-u Return only one unique representative from
a series of identical sorted lines

sort -k 3 data.txt

sort -k 2 -t "," F1.csv

sort -nr numbers.txt

sort A.txt > A_sort.txt

uniq Return a single line for each consecutive instance of that line
in a fi le or output stream. To remove all duplicates from
anywhere in the fi le, it must be sorted before being piped
to the uniq command

Use -c fl ag to return a count along with the repeated
element

uniq -c records.txt

sort names | uniq -c

Appendix3.indd 475Appendix3.indd 475 10/7/10 3:58 PM10/7/10 3:58 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

476 Appendix 3

Command Description Usage

cut Extract one or more columns of data from a fi le

-f 1,3 Return columns 1 and 3, delimited by tabs

-d "," Use commas as the fi eld delimiter instead
of tabs. Used in combination with –f

-c 3-8 Return characters 3 through 8 from the fi le
or stream of data

cut -c 5-15 data.txt

cut -f 1,6 data.csv

cut -f2 -d ":" > Hr.txt

curl Retrieve the contents of a URL from over the network. URL
should be placed in quotes. Without additional param-
eters, will stream contents to the screen

For some Linux versions, wget offers similar functionality
See man curl for ways to send user login information at the

same time

-o Set the name of the output fi le to save
individual fi les for the data. See #1 below

-m 30 Set a time out of 30 seconds

[01-25] In the URL, substitute two digit numbers
from 01 to 25 into the address in
succession

{22,33}

{A,C,E}

Substitute items in brackets into URL

#1 The substituted value, for use in generating
the fi lename

curl "www.myloc.edu" >

myloc.html

curl "http://www.nasa.

gov/weather[01-12]

{1999,2000}" -m 30

-o weather#1_#2.dat

sudo Run the command that follows as a superuser
with privileges to write to system fi les

sudo python setup.py install

sudo nano /etc/hosts

alias Defi ne a shortcut for use at the command line. To make
persistent, add to startup settings fi le .bash_profile or
equivalent

alias cx='chmod u+x'

function Create a shell function—like a small script
$1 is the fi rst user argument supplied after the command is

typed
$@ is all the parameters—useful for loops as below
Variable names are defi ned with the format NAME= with no

spaces. They are retrieved with $NAME
Save it in .bash_profile to make it permanent

myfunction() {

 # insert commands here

 echo $1

}

; In a command or script, equivalent to pressing R and
starting a new line

date; ls

Appendix3.indd 476Appendix3.indd 476 10/7/10 3:58 PM10/7/10 3:58 PM

 Shell Commands 477

Command Description Usage

for Perform a for loop in the shell. Can be useful in the context
of a function

for ITEM in *.txt; do

 echo $ITEM

done

if An if statement in a shell function:

if [test condition]

then

 # insert commands

else

 # alternate command

fi

Comparison operators are eq for equals, lt for less than
and gt for greater than

if [$# -lt 1]

then

 echo "Less than"

else

 echo "greater than 1"

fi

` ` Backtick symbols surrounding a command cause the com-
mand to be executed and then substitute the output into
that place in the shell command or script

cd `which python`/..

nano `which script.py`

host Return IP number associated with a hostname, or the
hostname associated with an IP address, if available

host www.sinauer.com

host 127.0.0.1

ssh Start a secure remote shell connection ssh lucy@pcfb.org

scp Securely copy fi les to or from a remote location scp localfile user@host/path/remotefile

scp user@host/home/file.txt localfile.txt

sftp Start a fi le transfer connection to a remote site. The prompt
changes to an ftp prompt, at which the following com-
mands can be used:

open From the prompt, open a new sftp connection
get Bring a remote fi le to the local server
put Place a local fi le on the remote system
cd Change directory on the remote server
lcd Change directory on the local machine
quit Exit the sftp connection

sftp user@remotemachine

gzip

gunzip

zip

unzip

Compress and uncompress fi les gzip files.tar

gunzip files.tar.gz

unzip archive.zip

tar Create or expand an archive containing fi les or
folders

-cf Create
-xvf Expand
-xvfz Expand and uncompress gzip

tar -cf archive.tar ~/scripts

tar -xvfz arch.tar.gz

Appendix3.indd 477Appendix3.indd 477 10/7/10 3:58 PM10/7/10 3:58 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

478 Appendix 3

Command Description Usage

& When placed at the end of a command, runs it in the back-
ground

ps Show currently running processes. Flags controlling the out-
put vary greatly by system. Usually a good starting point is
-ax. See man ps for more

ps -ax | grep lucy

top Show current processes sorted by various parameters, most
useful of which is processor usage -u

top -u

kill -9 Terminate a process emphatically, using its process ID. Re-
trieve PID from the ps or top command

kill -9 5567

killall Terminate processes by name killall Firefox

nohup Run command in background and don’t terminate it when
logging out or closing the shell window

Use in this odd format shown, to prevent program output to
cause the command to quit

nohup command 2> /dev/
null < /dev/null &

D Z Suspend the operation to move it into the background or
perform other operations

jobs Show backgrounded or suspended jobs, won’t show normal
active processes

bg Move a suspended process into the background. Optional
number after it in the format %1 will specify the job number

apt-get

yum

rpm

port

Package installers for various Unix distributions. Search for
and install remote software packages. Typically used with
sudo

sudo apt-get install agrep

yum search imagemagick

Appendix3.indd 478Appendix3.indd 478 10/7/10 3:58 PM10/7/10 3:58 PM

PYTHON QUICK REFERENCE

Appendix 4

Conventions for this appendix
In the examples below, italicized terms are not real variable or function names, but
are stand-ins for an actual name. If a function name is shown as .function()
then the dot means it is used as a method, coming after the variable name, as in
MyString.upper().

Format, syntax, and punctuation in Python
• Indented lines defi ne blocks of statements that are executed in loops,

decisions, and functions.

• Comments are marked by # and extend from that symbol to the end of
the line. Multi-line comments can be bracketed on both sides by three
quote marks.

• To continue a statement on the next line, use the \ character at the end of
a line.

• Parentheses () pass parameters to functions.1

• Square brackets [] defi ne lists and retrieve subsets of values from strings,
lists, dictionaries, and other types.

• Curly brackets {} defi ne dictionary entries.

Python scripts begin with the shebang line, and can include an optional line to en-
able support of Unicode characters:

#! /usr/bin/env python
coding: utf-8

1 They also are used to defi ne tuples, non-changeable list-like variables that we don’t address in this
book.

Appendix4.indd 479Appendix4.indd 479 10/7/10 4:03 PM10/7/10 4:03 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

480 Appendix 4

The command-line interpreter
Start by typing python at the command line. Cycle up through history of previous
Python commands using Ø. Use quit() or D D to exit (D Z in Windows).

You should be able to paste entire programs into the interpreter, but sometimes
the indented block of a loop or conditional statement might not be carried over
properly. Pasting commands at the Python prompt also does not work well for
things involving user input or reading and writing fi les. In addition, the buffer of
your terminal program may not keep up with large pasted blocks, resulting in er-
rors on the text pasted.

Command summary
Variable types and statistics

Changing variable types and getting information

Convert numbers and other types to strings
This conversion is required for the .write() function used

with a fi le or the sys.stderr.write() function

str()

Convert integers or strings to fl oating point float()

Can specify the base in alternate base systems. To specify
the number in hex, use int(MyString,16)

int(3.14)
int("3")
int("4F",16)

Give the length of a string, list, or dictionary len("ABCD")
len([1,2,4,8])
len(Diction)

Strings
Defi ning and formatting strings

Strings are defi ned by pairs of single (')
or double (") quotation marks, not curly
quotes (“”)

Location = "Hawai'i"
Region = "3'-polyA"
Genus = 'Gymnopraia'

Multi-line strings are defi ned by three quote
marks in a row

MultiString = """
 Triple-quoted strings
 can span several lines.
 They also act like comments
"""

Convert from number to string str(100.5)

Find the ASCII code for a string character
with ord()

ord('A')

Appendix4.indd 480Appendix4.indd 480 10/7/10 4:04 PM10/7/10 4:04 PM

 Python Quick Reference 481

Manipulating strings

Change case with .upper() and
.lower()

MyString.upper()
MyString.lower()

Join two strings with + MyString + YourString
'Value' + str(MyValue) + '\n'

Repeat a string with * print '='*30
==============================

Literal substitution (not using wildcards or
regular expressions) with .replace()

MyString.replace('jellyfish','medusa')

Count occurrences of 'A' in MyString
with .count()

MyString.count('A')

Remove all white space from rightmost
end of string with .rstrip()

Remove only linefeeds, not tabs

MyString.rstrip()

MyString.rstrip('\n')

Strip all white space from both sides of
string with .strip()

MyString.strip()

See Working with lists in this appendix for converting strings or characters to lists
and Searching with regular expressions, also in this appendix, for advanced search
and replace techniques.

Gathering user input

Get user input during execution of program raw_input("Enter a value:")

Get space-separated parameters given when
program is run at the command line. You
can pass parameters with wildcards, like
dive*.csv

import sys
sys.argv

The script or program name, using the zeroth
parameter

sys.argv[0]

All subsequent command-line arguments sys.argv[1:]

Determine how many command-line parameters
were provided, via the len() function

if len(sys.argv) > 1:

Appendix4.indd 481Appendix4.indd 481 10/7/10 4:04 PM10/7/10 4:04 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

482 Appendix 4

Building strings
Printing strings

Print variables separated by a space print MyString, MyNumber

Print variables not separated by space print MyString + str(MyNumber)

Generating strings with the formatting operator, %:

MyString = '%s %.2f %d' % ("Value",4.1666,256)
 Υ Substitution points Υ Values to insert

This creates the string: 'Value 4.17 256'

Given the string s = '%x' % (4.13) where %x is a placeholder listed below:

Placeholder Type Result

%s String variable 'four'

%d Integer digits '4'

%5d Integer padded to at least fi ve spaces ' 4'

%f Floating point '4.130000'

%.2f Float with precision of two decimal points '4.13'

%5.1f Float with one decimal, padded to at least fi ve
total spaces (includes decimal point)

' 4.1'

Comparisons and logical operators
Comparison operatorsa

Comparison Is True if...

x == y x is equal to y

x != y x is not equal y

x > y x is greater than y

x < y x is less than y

x >= y x is greater than or equal to y

x <= y x is less than or equal to y

aThese operators return True (1) or False (0) based on the result
of the comparison.

Appendix4.indd 482Appendix4.indd 482 10/7/10 4:04 PM10/7/10 4:04 PM

 Python Quick Reference 483

Logical operatorsa

Logical operator Is True if...

A and B Both A and B are True

A or B Either A or B is True

not B B is False (inverts the value of B)

(not A) or B A is False or B is True

not (A or B) A and B are both False

aIn this table, A and B represent a True/False comparison like
those listed in the previous table.

Note that in Python, when an expression involving logical operators is found to be
true, the value returned is that of the fi rst true item being tested, not True itself.

>>> 1 and 2
2
>>> 3 or 4
3

Math operators
Normal order of precedence applies. Operations involving only integers produce
only integers, even at the expense of accuracy.

Addition +

Subtraction -

Multiplication *

Division /

Modulo (remainder after
division)

%
7 % 2 Ο 1

Power **
2**8=256

Truncated division (result
without remainder)

//
7//2.0 = 3.0

Increment a variable by a
value

+=
X += 2

Appendix4.indd 483Appendix4.indd 483 10/7/10 4:04 PM10/7/10 4:04 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

484 Appendix 4

Decisions
The if, elif, and else commands control the fl ow of a program according to
logical tests. Statements built on these commands end with a colon. Below is a
description of each, with example code on the right.

Loops
For and while loop defi nitions end with a colon. Use for loops to step through
ranges and lists. Below are a series of loop examples, with code shown on the right.

for loop using range()
for Num in range(10):
 print Num * 10

for loop with a list
for Item in MyList:
 print Item

for loop with a string
 for Letter in "FEDCBA":

 print Letter

while loop
X=0
while X < 11:
 print X
 X = X + 2

if logical1:
 # do indented lines
 # if logical1 is True

A=5
if A < 0:
 print "Negative number"

elif A > 0:
 print "Zero or positive number"

else:
 print "Zero"

elif logical2:
 # if logical1 is False
 # and logical2 is True

else:
 # do if all tests
 # above are False

Appendix4.indd 484Appendix4.indd 484 10/7/10 4:04 PM10/7/10 4:04 PM

 Python Quick Reference 485

Searching with regular expressions
Regexp to fi nd matching subsets in a string
Use regexp within your program to extract and substitute portions of a string. The
basic format is:

Results = re.search(query,string)

The query is a text string containing the regular expressions pattern that you
would enter into a Find dialog box.

Import the module import re

Defi ne a search query, using raw
string

MyRe = r"(\w)(\w+)"

String to search MyString = "Agalma elegans"

Search and save matches MyResult = re.search(MyRe, MyString)

All the matches together MyResult.group(0)

The fi rst captured match MyResult.group(1)

All matches as separate items MyResult.groups()

Regexp to substitute into a string
The basic format is:

re.sub(query, replacement, string)

When used in a program, this is the same as a Replace All command for that string.

Import the module import re

Defi ne a search query, using a raw string MyRe = r"(\w)(\w+) (.*)"

Defi ne the replacement term, using
\1, \2, etc., to represent entities
captured with parentheses

MySub = r"\1. \3"

String to search MyString = "Agalma elegans"

Search and save matches NewString = re.sub(MyRe, MySub, MyString)

The result saved in NewString "A. elegans"

Appendix4.indd 485Appendix4.indd 485 10/7/10 4:04 PM10/7/10 4:04 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

486 Appendix 4

Working with lists
Lists are ordered collections of objects. Items in a list can be of any type, including
other lists and heterogeneous mixes of variable types. The fi rst element has an in-
dex of 0; so, for example, a list with fi ve members does not have an item at index 5.

Creating lists

Create a list from string or other variable type
If the variable is a string, the list elements will be each

character of the string

list(MyString)

Defi ne with square brackets MyList = [1,2,3]
OtherList = [[2,4,6],[3,5,7]]

Defi ne an empty list; required before the list can be
appended to

MyList=[]

Defi ne numerical lists with the range() function
The left element is included in the retrieval, the right index

is not
Given one parameter, range(N) creates N elements, from
0 to N-1. A third parameter optionally sets the step size
between elements, positive or negative

Function Result
range(5) [0, 1, 2, 3, 4]
range(1,8,2) [1, 3, 5, 7]
range(5,0,-1) [5, 4, 3, 2, 1]

Parse strings into lists with .split()
Default delimiter is any amount of white space, or specify

delimiter character in the ()

MyList = MyString.split()

Add elements with .append() MyList.append(10)

Insert elements with a single index repeated on both
sides of the colon

MyList=range(5)
MyList[3:3]=[9,8,7]
>>> MyList
[0, 1, 2, 9, 8, 7, 3, 4]

Delete elements from list with del
Assign =[] to delete indexed elements

del MyList[2:5]
MyList[2:5]=[]

Appendix4.indd 486Appendix4.indd 486 10/7/10 4:04 PM10/7/10 4:04 PM

 Python Quick Reference 487

Accessing list elements

Extract elements with []
Index range: Start element is retrieved, fi nish element is not
Indices can count from either the beginning, or, using negative

numbers, the end of the list

MyList[Start:Finish]

MyList[begin:end+1:step]

Skip fi rst element of a list MyList[1:]

All but last element MyList[:-1]

Return list elements in reverse order, leaving the original list
unchanged

Sort list in place, modify original

MyList[::-1]

MyList.reverse()

Extract even or odd elements MyList=range(8)
MyList [1::2]
[1, 3, 5, 7]
MyList[0::2]
[0, 2, 4, 6]

Unpacking two or more values at once a,b=MyList[0,1]

List information and conversions

Convert lists of strings to strings with .join()

The .join() method works a bit backwards, acting on the
character used to join, with the list as a parameter

''.join(MyList)

MyList = ['A', 'B', 'C', 'D']
print '-'.join(MyList)
A-B-C-D

Test if an item is in a list with the in operator print 'A' in MyList
True

Create a list of unique elements of a list with set() MyList=list('aabbbcdaa')
print list(set(Mylist))
['a','b','c','d']

Sort lists
Return a sorted list, leaving original list unaltered

Sort in place, modifying original list

NewList=MyList.sorted()

MyList.sort()

Keys=Diction.keys()
Keys.sort()

Retrieve elements and their indices together, using enumerate() Ind, Elem = enumerate(MyList)

Appendix4.indd 487Appendix4.indd 487 10/7/10 4:04 PM10/7/10 4:04 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

488 Appendix 4

List comprehension
Performs an operation on each item in a list, and returns a list of the results. List
comprehensions are very useful for manipulating lists in Python.

Squares = [Val**2 for Val in MyList]
Strings = [str(Val) for Val in MyList]

Dictionaries
Dictionaries are somewhat like lists, except that instead of values being accessed
by sequential numerical keys (indexes), they are accessed by non-sequential keys
defi ned as you wish. Keys and values can be of many types, including numbers,
strings, or lists, and they can occur together in one dictionary. Only one instance of
a key is allowed in a dictionary, but values can occur repeatedly; that is, it is keys
that are required to be unique, not values. Dictionaries have no intrinsic order to
their contents, and values are returned only by key, not by position or order of
entry.

Defi ning dictionaries

Defi ne entries within curly brackets with the format
{key: value}

Key–value pairs are separated by commas
Between the brackets, the defi nition can span several

lines and indentation is not important

Diction = {1:'a', 2:'b'}
Diction={
'Lilyopsis' :3, 'Resomia' :2,
'Rhizophysa':1, 'Gymnopraia':3 }

A list of keys and a list of values having the same
number of elements can be zipped together to
form a dictionary

SiphKeys = ['Lilyopsis','Rhizophysa',
 'Resomia','Gymnopraia']
SiphVals = [3,1,2,3]
Diction = dict(zip(SiphKeys,SiphVals))

Add entries using indexed values with square brackets
Requires a pre-existing dictionary, which can have no

entries

Diction={}
Diction['Marrus'] = 2

Delete dictionary entries with del
The method used to clear list elements by assigning

to [] does not work with dictionaries. The key will
still exist

del Diction['Marrus']

Appendix4.indd 488Appendix4.indd 488 10/7/10 4:04 PM10/7/10 4:04 PM

 Python Quick Reference 489

Extracting values from a dictionary

Index with square brackets [] and the key

If the key is not present, results in an error

print Diction['Resomia']
2
print Diction ['Erenna']
...KeyError: 'Erenna'

Retrieve with .get()
Optionally, provide a value to return if

the key is not present

print Diction.get('Resomia')
2
print Diction.get('Erenna',-99)
-99

Information about a dictionary

Get a list of keys or values with .keys() and
.values(), but not in any predictable order

The order, however, will be internally consistent
between the two lists

Diction.keys()
['Resomia','Lilyopsis',
'Gymnopraia','Rhizophysa']
Diction.values()
[2, 3, 3, 1]

Number of entries in a dictionary len(Diction)

Creating functions
Defi ne the function in the program before it is used, or in an external fi le which is
imported. Functions can be generated with or without additional parameters, and
parameters can be assigned default values.

def function_name(Parameter = Defaultvalue):
 # insert statements that calculate values
 return Result # send back the result

Call the function from within the program, passing values in parentheses:

MyValue = function_name(200)

Appendix4.indd 489Appendix4.indd 489 10/7/10 4:04 PM10/7/10 4:04 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

490 Appendix 4

Working with fi les

An example of a short fi le-reading program in action:

FileName="/Users/lucy/pcfb/examples/FPexcerpt.fta"
InFile = open(FileName, 'rU')
for Line in InFile:
 MyLine = Line.strip()
 if MyLine[0]==">":
 print MyLine[1:]
InFile.close()

Reading from a fi le

Open the connection to the fi le InFile = open(FileName, 'rU')

Read lines in succession for Line in InFile:
 # perform operation on Lines

Alternatively, read all lines into a list at
once. (This can’t be used after the com-
mand above since InFile is already at
the end of the fi le)

AllLines = InFile.readlines()

Close the fi le connection InFile.close()

Getting information about fi les

Use the os module import os

Check if string is path to a fi le; fails
if it is not found or if it is a folder
rather than a fi le

os.path.isfile('/Users/lucy/pcfb/')

Check if a folder or fi le exists

Fails with ~/ as part of path

os.path.exists('/Users/lucy/pcfb/')
True
os.path.exists('~/pcfb/')
False

Get a list of fi les matching the
parameter, using * as a wildcard

import glob
FileList = glob.glob('pcfb/*.txt')

Appendix4.indd 490Appendix4.indd 490 10/7/10 4:04 PM10/7/10 4:04 PM

 Python Quick Reference 491

Writing to a fi le

Open fi le stream, overwriting existing fi le if it
exists

OutFile = open(FileName, 'w')

Open fi le stream, appending to the end of a
fi le if it already exists

OutFile = open(FileName, 'a')

Write a string to the specifi ed OutFile
Line endings are not automatically

appended, and numbers must be converted
to strings beforehand, using the str()
function or the format operator %

OutFile.write('Text\n')

Close the OutFile when done writing OutFile.close()

Using modules and functions
First import the module, then call the function, usually followed by parentheses.

Ways to import functions from a module

Import all the functions and use them thereafter by
appending the function name to the module

import themodule
themodule.thefunction()

Import a module, but use a different name for it
within the program

import longmodulename as shortname
shortname.thefunction()

Import all the functions from a module, and use them
with only the function name

from themodule import *
thefunction()

Import a particular function, and use it with just its name from themodule import thefunction
thefunction()

To see a list of commands in the module, after importing
in the Python interactive environment

dir(modulename)
help(modulename)

To create your own modules, use def to defi ne functions as indicated above, place
them in their own fi le, and save with a fi lename ending in .py somewhere in your
PATH. Import them into your script using the fi lename without the .py extension.

Appendix4.indd 491Appendix4.indd 491 10/7/10 4:04 PM10/7/10 4:04 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

492 Appendix 4

Some built-in modules

random Random sampling and random number generation

urllib Downloading and interacting with Web resources

time Information related to the current time and elapsed time

math Some basic trigonometric functions and constants

os Items related to the fi le system

sys System-level commands, such as command-line arguments

re The regular expressions library for search and replace

datetime Date conversion and calculation functions

xml Reading and writing XML fi les

csv Read in a comma-delimited fi le using the function csv.reader()

Other installable modules

MySQLdb Interact with a mysql database

PySerial Connect through the serial port to external devices.
Use with import serial

matplotlib MATLAB-like plotting functionality

numpy, Scipy Large package of numerical and statistical capabilities

Biopython Functions for dealing with molecular sequence
fi les and searches. Use with import Bio or
from Bio import Seq

Appendix4.indd 492Appendix4.indd 492 10/7/10 4:04 PM10/7/10 4:04 PM

 Python Quick Reference 493

Miscellaneous Python operations
Presenting warnings and feedback
sys.stderr.write()

Sends output to screen (but does not send output to a fi le when a redirect such as
>> is used).

Catching errors
Statements indented under a try: function will be executed until an error occurs.
If there is an error, then the block of code indented under a subsequent except:
statement will be executed.

Shell operations within Python
os.popen("rmdir sandbox")

The shell command specifi ed in parentheses is executed. If you want to read the
results the command would usually print to the screen, append .read():
Contents = os.popen("ls -l").read()

For example, os.popen(pwd) will try to operate whether or not there is printed
feedback.

Reference and getting help
• From the python command line, use dir(item) to see functions within

a variable or imported module. Use type(item) to get a simple state-
ment of the variable type.

• Depending on the variable, help(item) may give you the information
pages related to a function or a variable, showing you information perti-
nent to its type.

• Consult Web sites such as diveintopython.org when stuck.

Appendix4.indd 493Appendix4.indd 493 10/7/10 4:04 PM10/7/10 4:04 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

Appendix6.indd 510Appendix6.indd 510 10/7/10 4:05 PM10/7/10 4:05 PM

SQL COMMANDS

Appendix 7

SQL, short for Structured Query Language, is the language used to interact with
relational databases, as discussed in Chapter 15. Although our specifi c examples
are drawn from MySQL, learning the basics of SQL can help you work with nearly
any database system. MySQL has excellent online references, tutorials, and ex-
amples. Many are at the site: dev.mysql.com/doc/refman/5.1/en/.

Installing MySQL is described in Chapter 15. The commands listed in the tables
below would be entered at the mysql> prompt, launched using the command:

mysql -u root

If you have assigned a password to the root account, the command above should
end with -p. You can also log in as a user other than root if you have confi gured
other users.

Databases are organized into tables containing fi elds (corresponding to col-
umns), which in turn contain values of related information organized into rows.

Working at the MySQL prompt

Purpose Example

Entering commands
Commands can span several lines. They are only executed when

the line is terminated with a semicolon. Indentation and capital-
ization are just for readability and are not interpreted

SELECT genus FROM specimens
 WHERE vehicle LIKE 'Tib%'
 AND depth > 100
;

Interrupt a command or cancel a partially typed command.
Do not type DC, which will end your entire mysql session

\c R

Quit MySQL EXIT;
\q R

Get general help, or help on a command or topic HELP
HELP SELECT
HELP LOAD DATA

See Appendix
1 for installation
and launching
instructions.

Appendix7.indd 511Appendix7.indd 511 10/7/10 4:12 PM10/7/10 4:12 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

512 Appendix 7

Selected MySQL data types

Data type Description

INTEGER An integer. Also abbreviated as INT

FLOAT A fl oating point number, including scientifi c notation

DATE A date in 'YYYY-MM-DD' format

DATETIME A date and time in 'YYYY-MM-DD HH:MM:SS' format

TEXT A string containing up to 65,535 characters

TINYTEXT A string containing up to 255 characters

BLOB A binary object, including images or other non-text data

Creating databases and tables

of subsequent commands

Make a new table containing
fi eld type defi nitions

CREATE TABLE tablename
 (fieldname1 TYPE, fieldname2 TYPE2);

Make a new table with an
autoincrementing primary
key, then other column
defi nitions

CREATE TABLE tablename
 (primarykeyname INTEGER
 NOT NULL AUTO_INCREMENT
 PRIMARY KEY,
 nextfield TYPE, anotherfield TYPE);

Adding data into table fi elds

Import formatted text data whose
columns correspond exactly to
predefi ned table fi elds

LOAD DATA LOCAL INFILE
 'path/to/infile';

Add a row of values to a table in the order
that matches the predefi ned fi elds

INSERT INTO tablename VALUES
 (1,"Beroe",5.2,"1865-12-18");

Redefi ne values based on another
criterion

UPDATE tablename SET values = x
 WHERE othervalues = y;

Database and table information

List the names of the databases or tables SHOW DATABASES;
SHOW TABLES;

Show name, type, and other information
about the fi elds of a table

DESCRIBE tablename;

Show the number of entries in the table SELECT COUNT(*) FROM tablename;

Appendix7.indd 512Appendix7.indd 512 10/7/10 4:12 PM10/7/10 4:12 PM

 SQL Commands 513

Extracting data from tables with SELECT

List all the rows in all columns of a table.
The rows retrieved can be refi ned with
WHERE statements at the end of the line

SELECT * FROM tablename;

Show the values of the listed columns
from the table

SELECT vehicle,date
 FROM specimens;

Show the unique values of a named
column

SELECT DISTINCT vehicle
 FROM specimens;

Show a count of the values in a named
table

SELECT COUNT(*)
 FROM specimens;

Show a count of the values in a named
fi eld, clustered by the unique values of
that fi eld. Like SELECT DISTINCT, but
with counts

SELECT vehicle,COUNT(*)
 FROM specimens
 GROUP BY vehicle;

Qualifying which rows to retrieve using WHERE

WHERE refi nes the records (rows) retrieved
from a SELECT command. Criteria include
comparisons like greater than and less than,
or comparisons of equality, which can apply
to numbers or strings. Use != for not equal

SELECT vehicle FROM specimens
 WHERE depth > 500
 AND dive < 600 ;

Find approximate matches, using % as a
wildcard of any characters

 WHERE vehicle LIKE "Tib%"

Find matches using regular expressions. Wild-
cards are not all supported, but beginning
and end of line, . [] + are supported

 WHERE field REGEXP query
 WHERE vehicle REGEXP "^T"
 WHERE species REGEXP "galma$"

Combine criteria with logical operators
Use parentheses to group logical entities

SELECT vehicle from specimens
 WHERE (vehicle LIKE "Ven%")
 OR (vehicle LIKE "JSL%");

Mathematical and statistical operators

Basic math operators +, -, *, , /

Basic comparisons <, >, =, !=

Average of the values AVG()

Count of the values COUNT()

Maximum value MAX()

Minimum value MIN()

Standard deviation STD()

Sum of the values SUM()

Appendix7.indd 513Appendix7.indd 513 10/7/10 4:12 PM10/7/10 4:12 PM

Make a new blank database CREATE DATABASE databasename;

Select a database as the target USE databasename;

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

514 Appendix 7

Deleting entries and tables

Clear all entries from a table DELETE FROM tablename;

Clear entries matching WHERE criteria DELETE FROM tablename WHERE
vehicle LIKE "Tib%";

Delete an entire table. Use with caution.
Can’t undo it

DROP tablename;

Saving to a fi le

Save the results from a query into a
tab-delimited fi le

SELECT * FROM midwater
 INTO OUTFILE '/export.txt'
 FIELDS TERMINATED BY '\t'
 LINES TERMINATED BY '\n'
;

Export the entire database to an archive.
This command is run at the shell
prompt, not the mysql prompt. The
resulting fi le has all the commands
necessary to recreate the original data-
base tables

mysqldump -u root databasename >
datafile.sql

Read back in a database created via dump
Read in a fi le of SQL commands
This command is also run at the bash

prompt, and the target database must
already exist

mysql -u root targetdb < mw.sql

User managementa

Set the password for the current user
(from the mysql prompt).
Remember the equal sign

SET PASSWORD = PASSWORD('mypass');
SET PASSWORD
 FOR 'python_user'@'localhost' =
 PASSWORD('newpass')
 OLD_PASSWORD('oldpass');

Add a new user with defi ned addresses
that they can connect from and a
preset password

CREATE USER 'newuser'@'localhost'
IDENTIFIED BY 'newpassword';

Give a user privileges. The capabilities,
database and tables, and user and
host are specifi ed. Host IP ranges
use % as the wildcard character

GRANT SELECT, INSERT, UPDATE,
CREATE, DELETE ON midwater.* TO
'newuser'@'localhost';

Log in with password (from the shell
prompt)

mysql -u newuser -p

aThese commands can also be accomplished from within the Dashboard or SQuirrelSQL GUIs.

Appendix7.indd 514Appendix7.indd 514 10/7/10 4:12 PM10/7/10 4:12 PM

ht
tp
://
pr
ac
tic

al
co

m
pu

tin
g.
or
g

