
Crash course in version control
(focusing mainly on git)

Cheng H. Lee
Lab7 Systems, Inc.

20 April 2016 — UT Biocomputing 2016

What is version control?

All “code” changes (bug fixes, improvements, etc.)

Need some way of managing changes; one naïve way:
 my-script.py my-script.py
 my-script.py.0 my-script.py.2013-05-01
 my-script.py.1 my-script.py.2012-12-20
 my-script.py.2 my-script.py.2012-10-31

-or-

What is version control?

Many, many problems with the naïve approach:

• Requires needless duplication, clutters up filesystem

• Numbering scheme often delicate, hard to maintain

• Hard to understand history, relationships between
versions and files.

• Hard to share and develop with multiple people

Most, if not all, of these problems solved by some sort of
version control system (VCS).

What is version control not?

** A VCS is NO substitute for actual backups! **

Can help in recovering code/text (especially if distributed)…

…but most VCSes deal badly with large and/or binary files.

Also, I do NOT recommended using a VCS to manage:

- Large collections of binary files (e.g., PDFs)

- Large data files (e.g., genome references)

Basic VCS terminology

Repository: Some place that stores files, their past versions,
and any associated metadata.

Working copy: Version of the repository currently being
worked on, where changes to be added back to the
repository are first produced.

Diff or patch: Description of how a specific file has changed.

Commit: Set of diffs and associated metadata (e.g., who
made the change and when) that describe how the
repository has changed from one version to another.

Lots of VCS out there

Centralized: single server storing the repository; all
commits must be put onto this server.

E.g.: Subversion, CVS

Distributed: each developer has a copy of the repository; all
commits happen "locally" but can be shared.

E.g.: Git, Mercurial

Also: Bzr, ClearCase, SourceSafe, RCS (not really...)

1. Check out a working copy from VCS server.

2. Make changes in working copy.

3. Test changes to make sure they work.

4. Commit changes back to central server.

5. Repeat steps 2 through 4.

Basic centralized VCS workflow

Basic distributed VCS workflow

Very similar...

1. Copy (or clone in git parlance) a repository.

2. Make changes in your local copy.

3. Test changes to make sure they work.

4. Commit changes to your local copy.

5. Repeat steps 2 through 4.

But we have the option of:

6. Sending our changes to someone else's repository, or

7. Pulling in changes from someone else's repository.

Getting started with git

Download and install:

Main page: http://git-scm.com/downloads

Windows: TortoiseGit (integrates with Explorer)

OS X: Use git-scm.com version (X Code version is old)

Debian/Ubuntu: "apt-get install git"

Minimal required configuration (tell git who you are):

 $ git config user.name "first last"
 $ git config user.email "me@institute.org"

http://git-scm.com/downloads
https://code.google.com/p/tortoisegit/
http://git-scm.com/downloads

Cloning a git repository

Cloning gets a repository from somewhere (e.g., GitHub),
including all tracked files and their history.

 # "git clone" will create a new subdirectory
 # underneath your current location
 $ cd $HOME/projects
 $ ls
 project1 project2

Cloning a git repository

Cloning gets a repository from somewhere (e.g., GitHub),
including all tracked files and their history.

 # Usage: "git clone <url>", where <url> is
 # provided by person you're cloning from; e.g.,
 $ git clone git@bitbucket.org:myorg/projectX.git
 Cloning into 'projectX'
 # ... bunch of other status messages ...

Cloning a git repository

Cloning gets a repository from somewhere (e.g., GitHub),
including all tracked files and their history.

 $ ls
 project1 project2 projectX
 $ cd projectX
 $ ls
 # ... contents of the "projectX" repository ...

Setting up your own git repository

What if you have a project on your own computer that
hasn't been shared with anyone else?

 $ cd /path/to/my/project
 $ ls -a
 file1.txt file2.txt subdir/
 $ git init
 Initialized empty Git repository in /path/to/my/project/.git/
 $ ls -a
 .git/ file1.txt file2.txt subdir/

Where the git magic happens;
remove at your own peril

Adding files to version control

Git (and most other VCSes) do not automatically put files
under version control.

Makes sense: don't want useless stuff (temporary files,
large files, binary data, etc.) in the repository.

You must explicitly tell git what files you want to track.

Adding files to version control

What's in our project directory?

 $ ls .
 file1.txt file2.txt subdir/
 $ ls subdir/
 file3.txt ignore-me.txt

Adding files to version control

 # "git status": what's changed in your working directory
 $ git status
 # On branch master
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # file1.txt
 # file2.txt
 # subdir/
 nothing added to commit but untracked files present (use "git
add" to track)

Adding files to version control

 # "git status": what's changed in your working directory
 $ git status
 # On branch master
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # file1.txt
 # file2.txt
 # subdir/
 nothing added to commit but untracked files present (use "git
add" to track)

"untracked": files git notices on
your filesystem that are not yet
under version control

Adding files to version control

 # "git status": what's changed in your working directory
 $ git status
 # On branch master
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # file1.txt
 # file2.txt
 # subdir/
 nothing added to commit but untracked files present (use "git
add" to track)

Note that subdirectory contents
aren't listed; we'll come back to
that in a bit.

Adding files to version control

 # "git status": what's changed in your working directory
 $ git status
 # On branch master
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # file1.txt
 # file2.txt
 # subdir/
 nothing added to commit but untracked files present (use "git
add" to track)

Git tells you exactly what to do

Adding files to version control

What's in our project directory?

 $ ls .
 file1.txt file2.txt subdir/
 $ ls subdir/
 file3.txt ignore-me.txt

Adding files to version control

What's in our project directory?

 $ ls .
 file1.txt file2.txt subdir/
 $ ls subdir/
 file3.txt ignore-me.txt

Let's say we only want to track file1.txt & file2.txt:

Adding files to version control

What's in our project directory?

 $ ls .
 file1.txt file2.txt subdir/
 $ ls subdir/
 file3.txt ignore-me.txt

 $ git add file1.txt
 $ git add file2.txt

Let's say we only want to track file1.txt & file2.txt:

Adding files to version control

 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git rm --cached <file>..." to unstage)
 #
 # new file: file1.txt
 # new file: file2.txt
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # subdir/

Adding files to version control

 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git rm --cached <file>..." to unstage)
 #
 # new file: file1.txt
 # new file: file2.txt
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # subdir/

"staged": git has detected
changes, but hasn't saved
("committed") them yet.

Adding files to version control

 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git rm --cached <file>..." to unstage)
 #
 # new file: file1.txt
 # new file: file2.txt
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # subdir/

in this case, two new files

Committing files to version control

 # "git commit" puts stuff in the repository...
 $ git commit -m "my first commit"
 [master (root-commit) ec4107d] my first commit
 1 files changed, 4 insertions(+), 0 deletions(-)
 create mode 100644 file1.txt
 create mode 100644 file2.txt

Committing files to version control

 # "git commit" puts stuff in the repository...
 $ git commit -m "my first commit"
 [master (root-commit) ec4107d] my first commit
 1 files changed, 4 insertions(+), 0 deletions(-)
 create mode 100644 file1.txt
 create mode 100644 file2.txt

commit message: tells people what you did

Committing files to version control

 # "git commit" puts stuff in the repository...
 $ git commit -m "my first commit"
 [master (root-commit) ec4107d] my first commit
 1 files changed, 4 insertions(+), 0 deletions(-)
 create mode 100644 file1.txt
 create mode 100644 file2.txt

SHA1 checksum: uniquely identifies commit;
actually 40-characters long, but we can usually
use just the 1st seven characters

What happens after the first commit?

 $ git status
 # On branch master
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # subdir/
 nothing added to commit but untracked files present (use "git
add" to track)

Git tells us there's still
stuff we aren't tracking.

 $ ls subdir/
 file3.txt ignore-me.txt
 $ git add subdir
 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # new file: subdir/file3.txt
 # new file: subdir/ignore-me.txt
 #

Dealing with subdirectories

 "git add <subdirectory name>"

 $ ls subdir/
 file3.txt ignore-me.txt
 $ git add subdir
 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # new file: subdir/file3.txt
 # new file: subdir/ignore-me.txt
 #

Dealing with subdirectories

 "git add <subdirectory name>"

adds all the files in the directory;
(might not be the desired behavior)

 $ git add subdir/file3.txt
 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # new file: subdir/file3.txt
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # subdir/ignore-me.txt

Dealing with subdirectories

 "git add <file name>"

 $ git add subdir/file3.txt
 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # new file: subdir/file3.txt
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # subdir/ignore-me.txt

Dealing with subdirectories

add just the file(s) you want
(don't forget to commit!)

 "git add <file name>"

 $ git add subdir/file3.txt
 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # new file: subdir/file3.txt
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # subdir/ignore-me.txt

Dealing with subdirectories

ignore all the others

 "git add <file name>"

As a general rule,
 $ git <action> <subdirectory>

will apply said action to all files in the subdirectory.

When this is not what you want, you'll have to apply the
action to each file individually:
 $ git <action> subdir/file_a
 $ git <action> subdir/file_b
 $

Dealing with subdirectories

Having files show up as "untracked" all the time can be
annoying. Use the .gitignore file to ignore them:

 $ cd /path/to/my/project
 $ ls -a
 .git/ file1.txt file2.txt subdir/

easiest to put it where your
repository's ".git" directory is

Ignoring certain files

Having files show up as "untracked" all the time can be
annoying. Use the .gitignore file to ignore them:

 $ cd /path/to/my/project
 $ ls -a
 .git/ file1.txt file2.txt subdir/
 $ echo "subdir/ignore-me.txt" > .gitignore
 $ echo ".*.swp" >> .gitignore
 $ echo "*~" >> .gitignore

Ignoring certain files

Having files show up as "untracked" all the time can be
annoying. Use the .gitignore file to ignore them:

 $ cd /path/to/my/project
 $ ls -a
 .git/ file1.txt file2.txt subdir/
 $ echo "subdir/ignore-me.txt" > .gitignore
 $ echo ".*.swp" >> .gitignore
 $ echo "*~" >> .gitignore

Ignoring certain files

ignore specific source files

Having files show up as "untracked" all the time can be
annoying. Use the .gitignore file to ignore them:

 $ cd /path/to/my/project
 $ ls -a
 .git/ file1.txt file2.txt subdir/
 $ echo "subdir/ignore-me.txt" > .gitignore
 $ echo ".*.swp" >> .gitignore
 $ echo "*~" >> .gitignore

Ignoring certain files

things like editor temp. files

".gitignore" is a regular text file.

You can edit it with any text editor.
 $ nano .gitignore
 # ... add “.*pyc” as a new line to have git
 # ignore compiled python files ...

You can add it to version control.
 # useful for multi-person projects
 $ git add .gitignore
 $ git commit -m "added a .gitignore file"
 ... info about the commit ...

Ignoring certain files

Adding more files to the repository

 # Create a new file; hopefully, you're doing
 # something a little more impressive.
 $ echo "hello world" > subdir/file4.txt

Adding more files to the repository

 # Create a new file; hopefully, you're doing
 # something a little more impressive.
 $ echo "hello world" > subdir/file4.txt

 $ git status
 # On branch master
 # Untracked files:
 # (use "git add <file>..." to include in what will be
committed)
 #
 # subdir/file4.txt
 nothing added to commit but untracked files present (use "git
add" to track)

Follow the standard approach:

 $ git add subdir/file4.txt
 $ git commit -m "added file4.txt"
 [master 1fede62] added file4.txt
 1 files changed, 1 insertions(+), 0 deletions(-)
 create mode 100644 subdir/file4.txt

Adding more files to the repository

To get a history of commits to your repository:

 $ git log
 commit 1fede6267aaa964995f722f8aa5503cd390f946e
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Thu May 2 19:35:32 2013 -0500

 added file4.txt

 commit 3e36430d2a9d519897e5c6f7e1922a31e3ab4d14
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Thu May 2 19:21:22 2013 -0500

 added a .gitignore file

 ... and so on ...

What's happened to our code?

To get a history of commits to your repository:

 $ git log
 commit 1fede6267aaa964995f722f8aa5503cd390f946e
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Thu May 2 19:35:32 2013 -0500

 added file4.txt

 commit 3e36430d2a9d519897e5c6f7e1922a31e3ab4d14
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Thu May 2 19:21:22 2013 -0500

 added a .gitignore file

 ... and so on ...

What's happened to our code?

The most recent commit...

To get a history of commits to your repository:

 $ git log
 commit 1fede6267aaa964995f722f8aa5503cd390f946e
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Thu May 2 19:35:32 2013 -0500

 added file4.txt

 commit 3e36430d2a9d519897e5c6f7e1922a31e3ab4d14
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Thu May 2 19:21:22 2013 -0500

 added a .gitignore file

 ... and so on ...

What's happened to our code?

...and the one before that

"git log" has lots of options:

 $ git log -5 # only the last 5 commits
 ... as before, but we'll only get 5 messages ...

 $ git log --oneline # abbreviated log
 1fede62 added file4.txt
 3e36430 added a .gitignore file
 3212151 added file3.txt
 ec4107d my first commit

 $ git log -- file1.txt # show commits involving file1.txt

 $ git help log # bring up help page for more options

What's happened to our code?

Let's say I've just finished editing "file1.txt".

 $ git status
 On branch master
 # Changes not staged for commit:
 # (use "git add <file>..." to update what will be committed)
 # (use "git checkout -- <file>..." to discard changes in
working directory)
 #
 # modified: file1.txt
 #
 no changes added to commit (use "git add" and/or "git commit -
a")

Committing edits to the repository

git has detected that
the file has changed.

To figure out what has changed since the last commit:

 $ git diff --color

Committing edits to the repository

context...

Output in “unified diff” (AKA “patch”) format

 $ git diff --color
 diff --git a/file1.txt b/file1.txt
 index 939f749..3e15a88 100644
 --- a/file1.txt
 +++ b/file1.txt
 @@ -1,4 +1,5 @@
 this is line 1
 this is line 2
 +this is a line I added
 this is line 3
 -this is line 4
 +this is the last line

Committing edits to the repository

context...

Output in “unified diff” (AKA “patch”) format

 $ git diff --color
 diff --git a/file1.txt b/file1.txt
 index 939f749..3e15a88 100644
 --- a/file1.txt
 +++ b/file1.txt
 @@ -1,4 +1,5 @@
 this is line 1
 this is line 2
 +this is a line I added
 this is line 3
 -this is line 4
 +this is the last line

Committing edits to the repository

old version of the file

line that was deleted

context...

Output in “unified diff” (AKA “patch”) format

 $ git diff --color
 diff --git a/file1.txt b/file1.txt
 index 939f749..3e15a88 100644
 --- a/file1.txt
 +++ b/file1.txt
 @@ -1,4 +1,5 @@
 this is line 1
 this is line 2
 +this is a line I added
 this is line 3
 -this is line 4
 +this is the last line

Committing edits to the repository

new version of the file

lines that were added

context...

VCSes don't record changes until you commit.

Unlike other VCSes, git "requires" a two-step commit:

 $ git add file1.txt # "stages" file1
 $ git commit -m "edits made to file1"
 [master 51cb5a3] edits made to file1
 1 files changed, 2 insertions(+), 1 deletions(-)

If you forget to stage a file with "git add", "git commit"
won't actually commit its changes into the repository.

Committing edits to the repository

There is a short-cut for the lazy. Suppose:

 $ git status
 # On branch master
 # Changes not staged for commit:
 # (use "git add <file>..." to update what will be committed)
 # (use "git checkout -- <file>..." to discard changes in
working directory)
 #
 # modified: file2.txt
 # modified: subdir/file3.txt
 #
 no changes added to commit (use "git add" and/or "git commit -
a")

Committing edits to the repository

The "long" way of committing both files:

 $ git add file2.txt subdir/file3.txt
 $ git commit -m "Changes to file2 and file3"
 [master 0724984] changes to file2 and file3
 2 files changed, 5 insertions(+), 0 deletions(-)

Committing edits to the repository

“Shorter” way: “git add -u” to stages all modified files.

 $ git add -u
 $ git status
 # On branch master
 # Changes to be committed:
 # modified: file2.txt
 # modified: subdir/file3.txt
 # ... other status messages ...
 $ git commit -m "Changes to file2 and file3"
 [master 0724984] changes to file2 and file3
 2 files changed, 5 insertions(+), 0 deletions(-)

Committing edits to the repository

“Shortest” way of committing updated files:

 $ git commit -a -m "Changes to file2 and file3"
 [master 0724984] changes to file2 and file3
 2 files changed, 5 insertions(+), 0 deletions(-)

“git commit -a”: “stage all tracked files that have been
modified and then commit them”.

This mimics the "commit" behavior of other VCSes.

Committing edits to the repository

Caveat: "git commit -a" does not automatically add
untracked files to the commit. If you create a new file,
you must explicitly use "git add" to commit it.

E.g., say you modified "file2.txt" and "file3.txt" and
added a new file called "useful-code.py". To commit all
three, you must run the following:

 $ git add useful-code.py
 $ git commit -a -m "my commit message"
 [master 4f9a57f] my commit message
 2 files changed, 5 insertions(+), 0 deletions(-)
 create mode 100644 useful-code.py

Committing edits to the repository

Occasionally useful to remove files from your working
copy; e.g., old code that conflicts with your new code:

 $ ls
 file1.txt file2.txt old-script.py subdir/
 $ git rm old-script.py
 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # deleted: old-script.py
 #

Removing files

staged but doesn't take
effect until commit.

Occasionally useful to remove files from your working
copy; e.g., old code that conflicts with your new code:

 $ git commit -m "removed obsolete script"
 [master 9458cbb] removed obsolete script
 1 files changed, 0 insertions(+), 4 deletions(-)
 delete mode 100644 old-script.py
 $ ls
 file1.txt file2.txt subdir/

Removing files

"old-script.py" no longer
exists in the directory.

Often need to move or rename files:

 $ git mv file2.txt subdir/new-name.txt
 # As with "git rm", this stages but does not commit the file.
 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # renamed: file2.txt -> subdir/new-name.txt
 #
 $ git commit -m "renamed file2.txt to subdir/new-name.txt"
 $ ls subdir
 new-name.txt

Moving or renaming files

Why use a VCS?
Once something is in the repository, it is never lost*.

Among other things, we can:
- Save ourselves from some types of “rm” trouble.
- Compare any two previous (committed) versions.
- Backing out from recent changes.
- Bring back a file from the dead.

* Well, unless the entire repository itself (i.e., the ".git" directory) is lost.**
** Or with git, you do something really bad like rebase a public branch, then run gc.

Dead but not fogotten

Commonly, trigger happiness with "rm":

 $... do some work ...
 $ ls
 file1.txt file2.txt file_a.txt file_b.txt subdir/

 # "file_a.txt" and "file_b.txt" were generated as temporary
 # files while I was doing work; don't need them any more...
 $ rm -f file*

 # OOPS!
 $ ls
 subdir/

Saving yourself from trouble

After deleting files:

 $ git status
 # On branch master
 # Changes not staged for commit:
 # (use "git add/rm <file>..." to update what will be
committed)
 # (use "git checkout -- <file>..." to discard changes in
working directory)
 #
 # deleted: file1.txt
 # deleted: file2.txt
 #
 no changes added to commit (use "git add" and/or "git commit -
a")

Saving yourself from trouble

Important files I cared about

After deleting files:

 $ git status
 # On branch master
 # Changes not staged for commit:
 # (use "git add/rm <file>..." to update what will be
committed)
 # (use "git checkout -- <file>..." to discard changes in
working directory)
 #
 # deleted: file1.txt
 # deleted: file2.txt
 #
 no changes added to commit (use "git add" and/or "git commit -
a")

Saving yourself from trouble

Follow the instructions
to "recover"

Recovering files from the repository:

 $ git checkout -- file1.txt file2.txt
 $ ls
 file1.txt file2.txt subdir/

Saving yourself from trouble

Recovering files from the repository:

 $ git checkout -- file1.txt file2.txt
 $ ls
 file1.txt file2.txt subdir/

Saving yourself from trouble

Important caveat: "git checkout" can only recover files
up to the last commit. All uncommitted changes are
permanently destroyed by “rm”.

Two main tools to look at old versions (commits):
- git log: fetch the previous commit logs and metadata
- git diff: generate a diff between two commits

"git log" general command format
$ git log <options> <since commit>..<until commit> -- <files>

"git diff" general command format
$ git diff <options> <since commit> -- <files>

Looking at/comparing to previous commits

git has multiple ways of referring commits; the
"--" is a way of saying everything after this is
the name of a file, not the name of a commit

Two more common ways:
<SHA1 checksum>: Absolute & unambiguous way
<commit>~<N>: <N>th-generation ancestor of commit

But there are many other ways; see "git help revisions".

"HEAD": Special name referring to the last commit*
"git status": compare current state to HEAD
"HEAD~5": 6 commits ago

* "last commit from where you are now, which might not be the latest commit."

How git refers to commits

 $ git log --oneline
 # working directory (with possible modifications) is here
 9458cbb removed obsolete script
 71875bd added less than useful python script
 4f9a57f my commit message
 51cb5a3 edits made to file1
 1fede62 added file4.txt
 3e36430 added a .gitignore file
 3212151 added file3.txt
 ec4107d my first commit

How git refers to commits

HEAD

 $ git log --oneline
 # working directory (with possible modifications) is here
 9458cbb removed obsolete script
 71875bd added less than useful python script
 4f9a57f my commit message
 51cb5a3 edits made to file1
 1fede62 added file4.txt
 3e36430 added a .gitignore file
 3212151 added file3.txt
 ec4107d my first commit

How git refers to commits

HEAD~1

HEAD

 $ git log --oneline
 # working directory (with possible modifications) is here
 9458cbb removed obsolete script
 71875bd added less than useful python script
 4f9a57f my commit message
 51cb5a3 edits made to file1
 1fede62 added file4.txt
 3e36430 added a .gitignore file
 3212151 added file3.txt
 ec4107d my first commit

How git refers to commits

HEAD

HEAD~2

 $ git log --oneline
 # working directory (with possible modifications) is here
 9458cbb removed obsolete script
 71875bd added less than useful python script
 4f9a57f my commit message
 51cb5a3 edits made to file1
 1fede62 added file4.txt
 3e36430 added a .gitignore file
 3212151 added file3.txt
 ec4107d my first commit

How git refers to commits

HEAD

HEAD~5

What's changed in the repository since 4 commits ago?
 # "git log" is not inclusive of the <since> commit.
 # Also, if we leave off a commit reference, git assumes
 # "HEAD"; so, these two are the same command:
 $ git log --oneline HEAD~3..HEAD
 $ git log --oneline HEAD~3..
 9458cbb removed obsolete script
 71875bd added less than useful python script
 4f9a57f my commit message
 51cb5a3 edits made to file1
 1fede62 added file4.txt
 3e36430 added a .gitignore file
 3212151 added file3.txt
 ec4107d my first commit

How git refers to commits

HEAD

Not
shown

Relative references (~<N>) are for commits, not files.

 $ git log --oneline -- file1.txt
 51cb5a3 edits made to file1
 ec4107d my first commit

 # What's changed in file1.txt in the last 2 commits?
 $ git log --oneline HEAD~2..
 9458cbb removed obsolete script
 71875bd added less than useful python script
 $ git log --oneline HEAD~2.. -- file1.txt
 $

How git refers to commits

HEAD~3
HEAD~7

No output since
nothing changed
in file1.txt

So far, we've been using "commit -m 'one line message'"
to generate our commit logs.

Better practice for commits is:
 $ git commit -a
 ... Brings up a text editor for you to enter a log message ...

This allows you to provide more informative messages.
Six months from now, you'll appreciate it.

Quick word about commit logs

De-facto community standard for log message.

 First line: short description of what was changed (<50 chars)
 # --- empty second line ---
 Multiple lines providing more details about what was
 changed (e.g., what algorithm was implemented), and
 more importantly, why it was changed.
 Often wrapped to 72 characters per line.

Quick word about commit logs

Example from one of my projects:

 $ git log -1 b09eee9
 commit b09eee938ce52b35026972b76897086c992145a2
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Mon Apr 29 13:22:32 2013 -0500

 CORE-258 mutation detection for JSONHstore by default

 Made SQLAlchemy mutation detection and notification
 the default behavior for JSONHstore; fixed problems we've
 had with multiple JSON-encoding passes by using the prefix
 tagging trick used with JSONArray (commit 7728c56).

Quick word about commit logs

Example from one of my projects:

 $ git log -1 b09eee9
 commit b09eee938ce52b35026972b76897086c992145a2
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Mon Apr 29 13:22:32 2013 -0500

 CORE-258 mutation detection for JSONHstore by default

 Made SQLAlchemy mutation detection and notification
 the default behavior for JSONHstore; fixed problems we've
 had with multiple JSON-encoding passes by using the prefix
 tagging trick used with JSONArray (commit 7728c56).

Quick word about commit logs

Metadata: commit id, who, when

Example from one of my projects:

 $ git log -1 b09eee9
 commit b09eee938ce52b35026972b76897086c992145a2
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Mon Apr 29 13:22:32 2013 -0500

 CORE-258 mutation detection for JSONHstore by default

 Made SQLAlchemy mutation detection and notification
 the default behavior for JSONHstore; fixed problems we've
 had with multiple JSON-encoding passes by using the prefix
 tagging trick used with JSONArray (commit 7728c56).

Quick word about commit logs

Short description: bug id, what was fixed
What shows up when we do "git log --oneline"

Example from one of my projects:

 $ git log -1 b09eee9
 commit b09eee938ce52b35026972b76897086c992145a2
 Author: Cheng H. Lee <cheng.lee@lab7.io>
 Date: Mon Apr 29 13:22:32 2013 -0500

 CORE-258 mutation detection for JSONHstore by default

 Made SQLAlchemy mutation detection and notification
 the default behavior for JSONHstore; fixed problems we've
 had with multiple JSON-encoding passes by using the prefix
 tagging trick used with JSONArray (commit 7728c56).

Quick word about commit logs

Gory details: why I fixed it, algorithm used, where
the fix idea come from, etc.

What have I changed since the last commit?

 $ echo "this is the new last line" >>file1.txt

 # git diff compares your edited version with some commit
 # Implicitly, this is HEAD. So, these are equivalent:
 $ git diff -- file1.txt
 $ git diff HEAD -- file1.txt
 diff --git a/file1.txt b/file1.txt
 index 3721789..e77d501 100644
 --- a/file1.txt
 +++ b/file1.txt
 @@ -3,3 +3,5 @@
 ... rest of diff output ...

Comparing to older versions

Can also get a single diff against any previous version

 $ git log --oneline -- file1.txt
 51cb5a3 edits made to file1
 ec4107d my first commit

Comparing to older versions

Can also get a single diff against any previous version

 $ git diff --color 51cb5a3 -- file1.txt
 diff --git a/file1.txt b/file1.txt
 index 3721789..06b3d59 100644
 --- a/file1.txt
 +++ b/file1.txt
 @@ -3,3 +3,4 @@ this is line 2
 this is a line I added
 this is line 3
 this is the last line
 +this is the new last line

Comparing to older versions

Can also get a single diff against any previous version

 $ git diff --color ec4107d -- file1.txt
 diff --git a/file1.txt b/file1.txt
 index 939f749..06b3d59 100644
 --- a/file1.txt
 +++ b/file1.txt
 @@ -1,4 +1,6 @@
 this is line 1
 this is line 2
 +this is a line I added
 this is line 3
 -this is line 4
 +this is the last line
 +this is the new last line

Comparing to older versions

added since 51cb5a3

changes from
ec4107d to 51cb5a3

Suppose you realize the old version of a file was better:

 $ git log --oneline -- file1.txt
 51cb5a3 edits made to file1
 ec4107d my first commit
 $ git checkout ec4107d -- file1.txt
 $ cat file1.txt
 # ... should see the contents of ec4107d here ...

Warning: This will silently and irrevocably destroy any
changes you've made to "file1.txt" since its last commit!

Bringing back an old version

Checkout only stages the file:

 $ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # modified: file1.txt
 #
 $ git commit -m "restored original version of file1"

Old version won't be fully restored in the repository until
the actual commit.

Bringing back an old version

Can use checkout to restore a file deleted by "git rm":

 # Use "git log" to find the commit that deleted the file
 # "--diff-filter=D": look for commits that deleted a file
 # "-1": show only the last relevant commit
 $ git log --diff-filter=D -1 --oneline -- old-script.py
 9458cbb removed obsolete script

 # Need to go back one commit (~1) so the file exists...
 $ git checkout 9458cbb~1 -- old-script.py

 $ git commit -m "restored my old python script"

"checkout" to undelete a file

Make sure you supply "-- <filename>"; without it:

 $ git checkout ec4107d
 ... Warning about 'detached HEAD' state ...

Rolls your working directory & all files back to their state
in the specified commit (probably not what you want).

To get out of this situation:

 $ git checkout --force master

Be careful with checkout!

Sometimes, we just want to see the contents of an old
version of a file (without restoring in the repository):

 # Dump the contents to the terminal
 $ git show <commit>:my-old-file.txt
 # Dump the contents to a file named "new-file.txt"
 $ git show <commit>:my-old-file.txt > new-file.txt

 # <commit> can be any valid commit reference; e.g.,
 $ git show HEAD~1:file1.txt # relative to last commit
 $ git show 51cb5a3:file1.txt # absolute commit identifier

Getting the contents of an old version

git tracks history as directed, acyclic graph of commits.

Each commit knows who its parent(s) is/are.

HEAD: special label for the commit you’re working from;
i.e., all changes when you run “git status”, “git diff”,
etc. are determined relative to HEAD.

The “HEAD” commit

0 1 2

HEAD

Committing moves HEAD.

The “HEAD” commit

0 1 2

HEAD

Committing moves HEAD.

The “HEAD” commit

0 1 2 3

HEAD

Running “git commit”…

Committing moves HEAD.

The “HEAD” commit

0 1 2 3 4

HEAD

Running “git commit”…again…

Normally, we don’t directly refer to “HEAD”.

Instead, we attach “HEAD” to another type of label
called a “branch” and refer to that branch.

Git automatically creates a branch called “master”
when a repository is first created.

Branches

0 1 2

master

HEAD

Committing advances both HEAD and the branch (tip)

Committing on branches

HEAD

master

0 1 2

Committing advances both HEAD and the branch (tip).

Committing on branches

0 1 2 3

HEAD

master

Running “git commit”…

Committing advances both HEAD and the branch (tip).

Committing on branches

0 1 2 4

HEAD

master

3

Running “git commit”…again…

Git makes it easy to create new branches.

Creating new branches

HEAD

master

0 1 2

Git makes it easy to create new branches.

Creating new branches

HEAD

master

0 1 2

foo

“git checkout -b foo”: create a new branch called “foo” and
set HEAD to follow it.

Commits advance HEAD and the current branch.

Committing on a branch

HEAD

master

0 1 2

foo

Starting on the “foo” branch (i.e., where HEAD is attached)…

Commits advance HEAD and the current branch.

Committing on a branch

HEAD

master

0 1 2

foo

Running “git commit”…

A

Commits advance HEAD and the current branch.

Committing on a branch

master

0 1 2

Running “git commit”…again…

A

HEAD

foo

B

Commits advance HEAD and the current branch.

Committing on a branch

master

0 1 2

Running “git commit”…again…and again.

A

HEAD

foo

CB

“checkout” changes which branch HEAD is attached to.

Switching branches with “checkout”

master

0 1 2

Starting from branch “foo”…

A

HEAD

foo

CB

“checkout” changes which branch HEAD is attached to.

Switching branches with “checkout”

master

0 1 2

…running “git checkout master” switches back to the
“master” branch.

A

foo

CB

HEAD

“checkout” changes which branch HEAD is attached to.

Switching branches with “checkout”

master

0 1 2

Running “git checkout foo” switches us from the “master”
branch back onto the “foo” branch.

A

HEAD

foo

CB

Two ways:

 $ git status
 On branch master
 # ... rest of “git status output” ...

…or…

 $ git branch
 foo
 * master
 release

What branch am I on?

“git merge” integrates changes into the current branch.

Merging branches

master

0 1 2

Starting from the “master” branch…

A

foo

CB

HEAD

“git merge” integrates changes into the current branch.

Merging branches

master

0 1 2

…running “git merge foo” integrates changes from branch
“foo” (commits A, B, and C) into our current branch (“master”).
Has effect of advancing HEAD commit as well.

A

foo

CB

HEAD

We can commit to branches independent of each other.

History need not be linear

master

0 1 2

A

foo

CB

HEAD

We can commit to branches independent of each other.

History need not be linear

0 1 2

Starting from master and committing two times…

A

foo

CB

master

HEAD

We can commit to branches independent of each other.

History need not be linear

0 1 2

Starting from master and committing two times…

A

foo

CB

3

HEAD

master

We can commit to branches independent of each other.

History need not be linear

0 1 2

Starting from master and committing two times…

A

foo

CB

4

HEAD

master

3

“merge” handles branches with divergent histories.

Merge commits

0 1 2

Starting from the “master” branch…

A

foo

CB

4

HEAD

master

3

“merge” handles branches with divergent histories.

Merge commits

0 1 2

…running “git merge foo” agains integrates changes from branch
“foo” into “master”. Commit m is known as a “merge commit”.

A

foo

CB

43

HEAD

master

m

Git is usually smart enough to figure how to merge
modifications, even if they’re in the same file.

Merge conflicts arise when git needs human intervention
to figure out which modifications to files are “correct”.

Merge conflicts

Last message from “merge” command will let us know.

 $ git merge foo
 # ... other merge messages ...
 CONFLICT (content): Merge conflict in my-code.py
 # ... other merge messages ...
 Automatic merge failed; fix conflicts and then commit the
result.
 $

Recognizing merge conflicts

“status” provides more details about merge conflicts.

 $ git status
 On branch master
 # ... other status messages ...
 You have unmerged paths.
 (fix conflicts and run “git commit”)
 # ... other status messages ...
 Unmerged paths:
 (use "git add/rm <file>..." as appropriate to mark
resolution)
 both modified: my-code.py
 $

Recognizing merge conflicts

“status” provides more details about merge conflicts.

 $ git status
 On branch master
 # ... other status messages ...
 You have unmerged paths.
 (fix conflicts and run “git commit”)
 # ... other status messages ...
 Unmerged paths:
 (use "git add/rm <file>..." as appropriate to mark
resolution)
 both modified: my-code.py
 $

Recognizing merge conflicts

Conflict exists & what to do

“status” provides more details about merge conflicts.

 $ git status
 On branch master
 # ... other status messages ...
 You have unmerged paths.
 (fix conflicts and run “git commit”)
 # ... other status messages ...
 Unmerged paths:
 (use "git add/rm <file>..." as appropriate to mark
resolution)
 both modified: my-code.py
 $

Recognizing merge conflicts

Which file(s) and the conflict type(s)

Merge conflicts between “<<<<<<<” and “>>>>>>>”:

 $ vi my-code.py
 # ... other file contents ...
 <<<<<<< HEAD
 print “good morning, world!”
 =======
 print “good afternoon, world!”
 >>>>>>> foo
 # ... other file contents …

Resolving merge conflicts

Merge conflicts between “<<<<<<<” and “>>>>>>>”:

 $ vi my-code.py
 # ... other file contents ...
 <<<<<<< HEAD
 print “good morning, world!”
 =======
 print “good afternoon, world!”
 >>>>>>> foo
 # ... other file contents …

Resolving merge conflicts

code from our branch (“master”)

Merge conflicts between “<<<<<<<” and “>>>>>>>”:

 $ vi my-code.py
 # ... other file contents ...
 <<<<<<< HEAD
 print “good morning, world!”
 =======
 print “good afternoon, world!”
 >>>>>>> foo
 # ... other file contents …

Resolving merge conflicts

code from other branch (“foo”)

Up to you to decide what the correct code is

 # while editing “my-code.py” ...
 # ... other file contents ...
 print “good afternoon, world!”
 # ... other file contents ...

Be aware: there may be >1 merge conflict per file!

Resolving merge conflicts

Complete the merge via normal commit process

 # Save “my-code.py” and quit
 $ git add my-code.py

Resolving merge conflicts

Complete the merge via normal commit process

 $ git status
 On branch master
 All conflicts fixed but you are still merging.
 (use "git commit" to conclude merge)

 Changes to be committed:
 # ... other modified/added/deleted files ...
 Modified: my-code.py
 # ... other modified/added/deleted files ...

Resolving merge conflicts

Complete the merge via normal commit process

 $ git commit
 # Editor will appear for you to provide a commit message.
 # Default “Merge branch ‘foo’ into master” usually ok.
 [master 7d1bc7e] Merge branch 'foo' into master

Resolving merge conflicts

Can work collaboratively with others using remotes,
which are “copies” of our repository in other places.

Why “copies” in quotes? Key feature of distributed VCS:
not all commits need be shared among repositories.

Remotes are located via URLs (https, ssh, git, file, etc.)
but are referred to using (local) names.

Remotes

“git remote” lists the (local) names of known remotes.

 $ git remote
 origin
 upstream

Remotes

“git remote -v” to get the URLs for our remotes.

 $ git remote -v
 origin git@github.com:chenghlee/UTbiocomputing2015.git (fetch)
 origin git@github.com:chenghlee/UTbiocomputing2015.git (push)
 upstream https://github.com/sjspielman/UTbiocomputing2015.git
(fetch)
 upstream https://github.com/sjspielman/UTbiocomputing2015.git
(push)

Remotes

When we clone a repository, git automatically creates
default “origin” remote for that source.

“origin” usually is a central server (e.g., GitHub) where
we can share code with other developers/users.

The “origin” remote

Remotes, like any repository, have one or more branches
(usually at least a “master” branch).

Remote branches have a “/” in their name separating
the remote and branch name. E.g., the “master” branch
on “origin” is called “origin/master”.

Local repository can interact with remotes by either:
 - Getting commits from remote branches (fetch/pull)
 - Sending commits to remotes branches (push)

Remote branches

Local & remote branches need not be related/interact.

Tracking branch: a local branch configured with a direct
relationship to a remote branch. Useful because it helps
define defaults when we fetch, push, and pull.

When you clone a repository, git automatically sets the
local “master” as a tracking branch of “origin/master”.

Tracking branches

 $ git fetch origin
 remote: Counting objects: 9, done.
 remote: Compressing objects: 100% (9/9), done.
 remote: Total 9 (delta 4), reused 0 (delta 0)
 Unpacking objects: 100% (9/9), done.
 From bitbucket.org:lab7io/biobuilds
 dc7ea0d..e0ab75f master -> origin/master
 97ed4ee..b5fb03e release -> origin/release
 * [new branch] rnastar -> origin/rnastar

“git fetch origin” updates the local repository with
information about all branches of the “origin” remote.

“fetch” gets updates from remotes

Think of remote branches as “read-only” local branches.

origin/master

Using remote branches

master

0 1

You can’t* commit directly to it, but you can do other things like
merge it with your local branch.

* “can’t” == “shouldn’t”

HEAD

2

“fetch” gets commits & updates remote branch labels.

Using remote branches

master

0 1 2

After “git fetch origin”…

A

origin/master

CB

HEAD

“merge” integrates remote code changes with yours.

Using remote branches

master

0 1 2

After “git merge origin/master”…

A

origin/master

CB

HEAD

Remotes allow you to work independently.

origin/master

Remotes branches key to collaboration

master

0 1

The situation after you’ve just cloned a repository

HEAD

2

Commits only affect your local branch.

Remotes branches key to collaboration

0 1 2 4

HEAD

master

3

origin/master

“git commit” advances “master” but not “origin/master”.

Again, use “fetch” to get other people’s contributions…

Remotes branches key to collaboration

0 1 2

A

origin/master

CB

4

HEAD

master

3

“git fetch origin”…

…and “merge” to integrate their code with yours.

Remotes branches key to collaboration

0 1 2 43

HEAD

master

m

A

origin/master

CB

“git merge origin/master”…

The fetch-then-merge pattern is really common.

If your local branch is also a tracking branch, you can use
“git pull” to fetch and merge with a single command.

Works because tracking branches know which remote and
remote branch to use.

“pull” as a short-cut

Assuming “master” is tracking “origin/master”…

“pull” as a short-cut

0 1 2 4

HEAD

master

3

origin/master

…“git pull” merges in changes with a single command.

0 1 2 43

HEAD

master

m

A

origin/master

CB

“pull” as a short-cut

Essentially performs a “git fetch origin master” followed by
a “git merge origin/master”.

Say we’ve made changes we’d like to share…

“push” lets us share code

0 1 4

HEAD

master

3

origin/master

2

…a “git push origin master” makes that code public.

“push” lets us share code

0 1

HEAD

master

3

origin/master

2 4

Commits 3 & 4 are now shared and available to anyone who runs
“git fetch origin”.

TL;DR: Always be explicit about the remote server &
branch you’re pushing to (i.e., “git push origin
master”, not “git push”), even with tracking branches.

In older versions of git, default behavior of a plain “git
push” is to push all* local branches to “origin”, instead
of just the (tracking) branch you’re sitting on.

In git ≥ 1.8, the default behavior could be tweaked by a
config option. In git ≥ 2.0, the default behavior switched
to be more-intuitive pushing of just your tracking branch.

“push” has version-specific quirks

By default, “push” will refuse to destroy existing history.

Best practice: “pull” before “push”

0 1

A CB

4

HEAD

master

3

A, B, and C are commits added since your last “git fetch origin”.

In this case, “git push origin master” will complain and fail.

origin/master

2

To avoid errors, run a “git pull” before you “push”.

Best practice: “pull” before “push”

0 1 2 43

HEAD

master

m

A

origin/master

CB

A “git pull” ensures your repository’s world view matches that
of “origin” (i.e., commits A, B, and C exist in both repositories).

To avoid errors, run a “git pull” before you “push”.

Best practice: “pull” before “push”

0 1 2 43

HEAD

master

A
origin/master

CB

“git push origin master” works once commit histories match.

m

Popular site for hosting git repositories.

Github

Important to remember: GitHub != git

Generally can’t edit directly in Github: clone repo. to
your computer using URL provided in the sidebar to work.

Using Github as “origin”

Cloning sets Github as the “origin” remote. (“Nothing
special” about GitHub; it acts like “origin” should.)

Using Github as “origin”

Forking: copies repo to your account, letting you work
on a project you don’t have “push” privileges for.

Forking GitHub repositories

Use your fork, not the original project, as the “origin”
repository when working on your computer.

Forking repositories

Pull request: mechanism for contributing modifications
from your fork back to the original project.

Initiated from your fork using the “Pull Request” button.

Note: Pull requests are a GitHub, not git, feature!

Pull requests

Pull request “dialog” lets you the repository and branch
you want to send the change from and to.

Pull requests

Pull request “dialog” lets you the repository and branch
you want to send the change from and to.

Pull requests

“head fork”: repo & branch
where the pull request is coming
from (usually your own).

Pull request “dialog” lets you the repository and branch
you want to send the change from and to.

Pull requests

“base fork”: repo & branch where
the pull request is going to (usually
repo you originally forked).

Pull request “dialog” lets you the repository and branch
you want to send the change from and to.

Pull requests

Click this button after selecting
the right repos & branches.

Last step in creating a pull request is to let upstream
authors know what changes you’re submitting.

Pull requests

Tip: Generally better to isolate pull requests on separate
branches, instead of sending them from master.

Pull requests

Don’t actually do this, or you may
accidentally submit other changes
before request is accepted!

This should be enough to get you started...

But git & most VCSes have other useful features; e.g.,

- Remotes & branches for complex dev. environments

- Tagging: labeling certain commits (e.g., “v1.0")

- Bug finding: bisect and blame

- Rebasing: rewriting history (use with extreme caution)

Also, not covered is working with large (open-source) projects:

- Managing hosting services like GitHub or BitBucket

- Integrating git & GitHub with other tools like bug trackers,
automated testing frameworks, etc.

Things not covered

Getting help:

- git help <command> (can be hard to understand)

- Git Book: http://git-scm.com/book

- StackOverflow

Visual tools (useful for managing commits and history browsing):

- Windows: TortoiseGit has tools built in

- OSX, Windows: SourceTree (http://sourcetreeapp.com/)

- Linux: gitk (pretty ugly though...)

Odds and ends

http://git-scm.com/book
http://sourcetreeapp.com

